NASA Ames Aerodynamic Heating Facility (AHF)

Stagnation point test of PICA thermal protection
material in the AHF facility

Mission: The Aerodynamic Heating Facility is designed to match heating rates of Earth or planetary hypersonic entry to enable the selection, validation and qualification of thermal protection systems (TPS) and materials.

Location: NASA Ames Research Center, Moffett Field, CA. United States.

Type of tunnel: Huels and constricted arc heater facility.

material in the Arif facility.			
Test gas	Air, N ₂ , O ₂	Test duration (min)	≤ 30
Nozzle exit (mm) With 25.4 and 38.1 mm throats	Conical (θ/2=8°), Ø 178, 305, 457, 610, 762, 914	Test article type	Stagnation Wedge point
Nozzle exit (mm) with 57.1 mm throat	Conical (θ/2=15°), Ø 127,191,254,381,508,635,762,889,1016	Test article type	Stagnation Wedge point
Input power (MW)	10 and 20	Test article size (mm)	< Ø 350 660X660
Bulk enthalpy (MJ/kg)	2-33	Surface pressure, kPa	0.5-45 0.1
Flow rates (kg/s)	0.05-0.7	Heating rate (kW/m²)*	90 - 9000 0.6-250

^{*}Cold wall fully catalytic surface on a 102-mm Ø sphere

Instrumentation:

- Hot wall temperature: thermocouples, IR pyrometry and radiometry
- Pressure: Pitot/static
- Cold wall heat flux: calorimetric probes of Gardon and slug types and null-point calorimetry
- Optical diagnostics: optical emission spectroscopy (OES), laser induced fluorescence (LIF)

Full scale SPRITE capsule geometry at simulated entry conditions

References:

Grinstead, J.H., Harris, C.L., Yeung, D., Scott, G.P., Porter, B.J., Graube, P., and Greenberg, R.B., "Next-generation Laser-induced Fluorescence Diagnostic Systems for NASA Arc Jet Facilities," *In 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition*, AIAA 2009-1521, January 2009, Orlando, FL.

Terrazas-Salinas, I., et. al., "Test Planning Guide for NASA Ames Research Center Arc Jet Complex and Range Complex," Document A029-9701-XM3 Rev.C., April 2009.

Information Contacts:

Ernest Fretter, +1 (650) 604-6166, ernest.f.fretter@nasa.gov

http://www.nasa.gov/centers/ames/thermophysics-facilities-home

AHF stagnation point test samples, calorimetric and pitot probes.